Invertible (Proof)

Summary

- Let A be an $n \times n$ matrix. A is invertible if and only if
- The columns of A span R^{n}
- For every b in R^{n}, the system $A x=b$ is consistent
- The rank of A is n
- The columns of A are linear independent
- The only solution to $A x=0$ is the zero vector
- The nullity of A is zero
- The reduced row echelon form of A is I_{n}
- A is a product of elementary matrices
- There exists an $n \times n$ matrix B such that $B A=I_{n}$
- There exists an $n \times n$ matrix C such that $A C=I_{n}$

Invertible

- Let A be an $\mathrm{n} \times \mathrm{n}$ matrix.
- Onto \rightarrow One-to-one \rightarrow invertible
- The columns of A span R^{n}
- For every b in R^{n}, the system $A x=b$ is consistent
- The rank of A is the number of rows
- One-to-one \rightarrow Onto \rightarrow invertible
- The columns of A are linear independent
- The rank of A is the number of columns
- The nullity of A is zero
- The only solution to $A x=0$ is the zero vector
- The reduced row echelon form of A is I_{n}

Is A Invertible?

- Let A be an $n \times n$ matrix. A is invertible if and only if
- The reduced row echelon form of A is I_{n}

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 6 \\
3 & 4 & 8
\end{array}\right] \xrightarrow[\text { RREF }]{ } \mathrm{I}_{\mathrm{n}} \text { Invertible } \\
& B=\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & 1 & 1 \\
1 & 0 & -1
\end{array}\right] \xrightarrow[\text { RREF }]{ }\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Not Invertible

Summary

- Let A be an $n \times n$ matrix. A is invertible if and only if
- The columns of A span R^{n}
onto - For every b in R^{n}, the system $A x=b$ is consistent
- The rank of A is n
- The columns of A are linear independent
- The only solution to $A x=0$ is the zero vector
- The nullity of A is zero
- The reduced row echelon form of A is I_{n}
- A is a product of elementary matrices
- There exists an $n \times n$ matrix B such that $B A=I_{n}$
- There exists an $n \times n$ matrix C such that $A C=I_{n}$

Invertible A is $n \times n$

If $A v=0$, then \ldots.

$$
B A v=0 \quad I_{n} v=v
$$

Invertible Ais nxn

For any vector b,

$$
A C B \text { is always a solution for } b
$$

Summary

- Let A be an $n \times n$ matrix. A is invertible if and only if
- The columns of A span R^{n}
onto - For every b in R^{n}, the system $A x=b$ is consistent
- The rank of A is n
- The columns of A are linear independent

One-toone

- The only solution to $A x=0$ is the zero vector
- The nullity of A is zero
- The reduced row echelon form of A is I_{n}
- A is a product of elementary matrices
- There exists an $n \times n$ matrix B such that $B A=I_{n}$
- There exists an $n \times n$ matrix C such that $A C=I_{n}$

